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A very commaon procedure when constructing boundary condi-
tions for the time-dependent Navier-Stokes equations at artificial
houndaries is to extrapolate the solution from grid points near the
boundary to the boundary itself. For supersonic outflow, where all
the characteristic variables leave the computational domain, this
leads to accurate results. In the case of subsonic outflow, where
one characteristic variable enters the computationaf domain, one
cannot in general expect accurate solutions by this procedure. The
problem with outflow boundary operators of extrapolation type at
artificial boundaries with errors in the boundary data of order one
wili be investigated. Both the problem when the artificial outflow
boundary is located in essentially uniform flow and the situation
when the artificial outflow boundary is located in a flow field with
large gradients are discussed. It will be shown, that in the special
case when there are large gradients tangential to the boundary,
extrapolation methods can be used even in the subsonic
case. ® 1995 Academic Press, Inc,

L. INTRODUCTION

b many computational problems one is faced with infinite
donmains, which for computational reasons must be made finite,
One possibility is to map the infinite domain onto a finite one
(see, for example. Grosch and Orzag [1]). Solution micthods
based on this technique are not considered here. Another possi-
hility, is to introduce an antificial boundary U in order to reduce
the infinite computational domain (). to a finite one . The
introduction of the artificial boundary makes it necessary to
formulate appropriate artificial boundary conditions.

Adtificial boundary conditions are used in many ficlds of
computational physics such as gas dynamics, hydrodynamics,
meteorology, elasticity, acoustics, electromagnetism, ete.. The
different practical applications require different features of the
artificial boundary conditions, but there are some common
points.

One has to assume that the original problem in the unbounded
domain 1, is well posed. The introduction of the artilicial
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boundary 1" and the corresponding boundary conditions must
also be such that the new problem in the bounded domain §}
is well posed; see Kreiss [2] for a discussion on well-posedness.

The solutions of the two problems should differ slightly from
each other in {). Let v be the solution in the bounded domain
{) and u the solution of the original problem in (. If the
problem in the bounded domain §} is weil posed and the solution
of the original problem approximately satisfies the artificial
boundary condition on I', then the difference w = u — v is
small (see Hagstrom [3], Bayliss and Turkel [4], and Halpern
[5]). In this paper it is shown that accurate solutions v can be
obtaited even if the solution u is pooily approximated by the
artificial boundary conditions. In many cases a simplified way
of estimating the difference between the two solutions arc used.
For example, in the case of the absorbing boundary conditions
discussed below, the difference between the two solutions in
the bounded and unbounded domain is considered small if the
reflection of the outgoing waves are small.

The problem with artificial boundaries will be solved numeri-
cally and hence it is important that stable discrele boundary
conditions can be constructed from the continuous oncs. [t is
of course possible o develop artificial boundary conditions
directly {or the discrete problem,; see, for example, Higdon {61,
Artificial boundary conditions have also been formulated for
nonlinear problems (see Hedstrom [9], Thompson [10, 11],
Hagstrom 112}, and Dunt [13]). Most researcher’s, however,
have developed their boundary conditions for the continuous
problem in the linear regime and discretised later.

Many methods for constructing artificial boundary conditions
lead to exact conditions in the form of integral relations. The
boundary conditions are normally non-local in both time and
space and, hence, not useful in practical calculations. The locali-
sation of the boundary conditions are made by approximating
the integral relation at certain dominating frequencies. A partic-
ular high frequency limit was considered by Engquist and Majda
|7, 8] while Hagstrom [ 4, 1 5] identified the dominant frequen-
cies in dissipative systems by the method of steepest decent.

It is important to note that information from the solution in
the exterior domain {}. — { 1o the solution in the domain (}
is transferred only via the artificial boundary conditions. This
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means that some a priori knowledge of the exterior solution is
necessary. The type of knowledge about the exterior solution
and how to transfer this knowledge to the artificial boundary
conditions is, roughly speaking, what separates the different
types of artificial boundary conditions in the literature. For a
more detailed discussion on these matters see Gustafsson and
Kreiss {16]. .

If accurate data are available through measurements, or if
the computational domain is so large that data obtained from
the state at infinity are sofficiently accurate, then one can use
well-posed boundary conditions of standard type. Gustafsson
and Sundstrdm [17], Oliger and Sundstrom [18], Engquist and
Gustafsson [19], and Nordstrom [20, 21} all used the energy
method to show well posedness of the Euler or Navier—Stoke’s
equations with constant coefficients. The boundary conditions
were chosen so that an energy estimate of the dissipative type
was obtained.

In most cases, however, accurate data are not available. The
principle of no reflection, i.e., where only outgoing waves from
the inner domain are allowed, leads to the so-called absorbing
boundary conditions first developed by Engquist and Majda [7,
8]. They are constructed in such a way that outgoing distur-
bances in the form of waves are not reflected back into the
computational domain. Note that if ingoing waves are present,
i.e., signals are entering the computational domain, then the
absorbing boundary conditions require accurate boundary data.
Gustafsson [22] generalized the absorbing boundary conditions
to the case with non-zero data outside the computational
domain.

Another way to transfer information about the exterior solu-
tion to the artificial boundary conditions is to use a simplifted
form of the equations in the exterior domain and formally solve
the equations exactly. The form of the solution in the exterior
domain is then used to construct boundary conditicns for the
true equations in the inner domain. Such procedures usually lead
to non-local conditions (see, for example, Ferm and Gustafsson
[23], Ferm [24, 25], Keller and Givioli [26], and Hagstrom
127D.

In many cases it is impossible to use methods based on
simplified models outside T'. For example, the geometry may
be non-trivial, not permitting any simplifications, or the flow
field might have large gradients. The question then is whether
or not one can construct boundary operators L giving accurate
solutions v in {) despite the fact that the true data g in Lv =
g are not known.

A very common procedure is to extrapolate the solution from
grid points near the boundary to the boundary itself. Linear
extrapolation, say, is an approximation of the condition 3%/
an® = 0, where » is normal to the boundary. For first- and
second-order systems, like the Euler and Navier—Stokes equa-
tions, one cannot expect accurate solutions if ingoing character-
istics are present. Kreiss [28] has investigated these matters
further. For most first-order derivatives in the boundary condi-
tions, where an energy estimate holds, conditions are given
such that the boundary layer sciutions are suppressed.
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In [29] the steady Navier—Stokes equations were analysed
and it was shown that extrapolation methods can be used with
good results also in the subsonic case if there are large gradients
tangential to the boundary. A time-dependent model problem
for the Navier—Stokes equations was analysed in [30, 31]. Based
on that analysis and numerical experiments it was proposed that
extrapolation methods can be used also for the time-dependent
Navier—Stokes equations. In this paper the theoretical basis for
the result proposed in [30, 31] is given.

The remainder of this paper will proceed as follows. In
Section 2.1 the general problem with artificial boundaries and
inaccurate boundary data is discussed. A linear model problem
is derived Section 2.2 and the main result of the paper is given.
In Section 2.3 the problem with derivative boundary conditions
at artificial boundaries in uniform flow is considered. The influ-
ence of large gradients is included in the analysis in Section
2.4, Numerical experiments that exemplify the results obtained
in Section 2.3 are given in Section 3.1. The results of Section
2.4 are compared with the results from numerical experiments
in Section 3.2. Finally, in Section 4 we sum up and draw conclu-
sions.

2. ANALYSIS

2.1. Artificial Boundaries and Inaccurate Boundary Data

We wish to solve the initial boundary value problem for the
flow around a solid body in the unbounded domain (.. (see
Fig. 1}

,=Plu+ F(x, 1), x€Q.,t=0,
u = f(x), xEN,. =0, (1)
Lsu = gs(t)! r& FS: t= 0,

where P is the differential operator and L; is the boundary
operator. F, f, g; are the forcing function, the initial function,
and the boundary data on the solid boundary, respectively. The

FIG. 1. Geometry definition for the flow around a solid body.
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quantities F, f, g; are considered as the data of the problem.
In practice we introduce artificial boundaries and try to solve
the problem in the bounded domain {2,

v, =P+ Fix,t), x€Q,t=0,

v = f(x), xE0N, =90,
L = gs(D), xel, =0, (2)
Lou = go(D), x&El,,t=0,
Ly = g1, xel, =0,

where the subscripts I, @, S denote an inflow boundary, an
outflow boundary, and a solid boundary, respectively. For
smooth flow, the difference w = ¥ — v is an approximation
of the solution to the linearised problem,

w, = Pluwyw, xEL£, =0,

w=0, xE0, =0,
Lav =0, xEl =0, 3)
Low=2gs(t), x&€Tl, =0,
Liw = gd1), xETlLt=0.

Note that the only data left in (3) is the boundary data. Comypati-
bility at 7 = () requires g,(0) = 2,(0) = 0.
The formulation (3) will be used to analyse boundary condi-

tions on T’y close to 'y although, strictly speaking, the region .

of smooth flow is located some distance away from T's. Nor-
mally one knows boundary data with good accuracy at inflow
boundaries, while knowledge of data at outflow boundaries
often are lacking, In other words one often has g, = g, — Liu
= 0 and go = go — Lou = O(1). .

In this paper outflow boundary operators L, of extrapolation
(or derivative) type with errors in the boundary data of order
one will be investigated. Both the problem when the artificial
outflow boundary is located far away from the solid body in
essentially uniform flow and the situation when the artificial
outflow boundary intersects the solid body in a flow field with
large gradients (see Fig. 2) will be discussed.

2.2. The Linearised Navier-Stokes Equations

The Navier—Stokes equations in non-dimensional form are

o= —up, — vp, — plu, + uy)
= —uh;, — Uity — pudp + (E/p)[(Bu; + Avy ) + (pea, + pv);]
v, = —uv, —vv, — pfp + (&/p)[(pn, + pu), + (6v, + Au,),]
T,=—ul,—vl,—(y— DT, +uv,)

+ (e/p)(T), + (¢T), + ML D]

© = y(y — Dud6u. + Av,) + plu, + 0.3 + vy(Au, + 600,)],
(4)

where p = pT/('yML), ¢* = TIM%, 0 = A + 2u, and ¢ = y«/Pr,
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FIG. 2. Geometry definition for the flow around the nose region of a ve-
hicle.

The dependent variables and parameters p, v, v, T, p, ¢, M.,
H, A, Kk, Pr, v, and e are respectively the density, x and y
components of the velocity, the temperature, the pressure, the
speed of sound, the free stream Mach number, the shear and
second viscosity, the coefficient of heat conduction, the Prandt
number, the ratio of specific heats, and the inverse Reynolds
number.

Let us consider the flow field schematically depicted in Fig.
2 and focus on the intersection between the artificial boundary
T’y and the solid boundary T's. With a no-slip condition at T's
the flow normal to [, is subsonic sufficiently close to I's even
if M > 1. To study the effect of extrapolation boundary condi-
tions on [, the Navier—Stokes equations are linearised in a
domain where large gradients are present in the basic flow field.

Let x be the coordinate along the solid wall and y the coordi-
nate normal to the wall. In the analysis below a time-dependent
disturbance around an almost steady flow ¢ = (5, #, 7, T)" with
small streamwise x-gradients and large transversal y-gradients
is investigated. The equation for the perturbation w = (p, u,
v, T)T can formally be written

w, + EIUWI + E()]Wy + EmW = S{ZZUWH + ‘XHWJ}‘ + Z(:2‘4";-,»-}’1 (35)

where the matrices A, are the ones normally included in a
linearised equation. In our case we have also kept the zero
order terms Byw, where

f, + 0, P B 0
| -@pXEp) o F (yMENB/P)
|\ —@pN(BIE) B T, (yMLXB/P)
0 7. T, (v~ D@ +70,)

Only the dominating components of By, will be included in the
following analysis.
From bougdary layer theory (see White [32]), it _is known

that p,, I, T, are large compared with p,, 4, U,, T,, p., U,
P, at sufficiently high free stream Mach numbers. Furthermore,
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the magnitude of p,, &,, ?} are increasing with increasing Reyn-
olds number (or decreasing &) and, hence, the following as-
sumption i1s made.

Assumption 2.1.  The first-order gradients in the basic flow
field are assumed to satisfy

Pt U, T 5=0, 0,.5,=0. |pl.[&glIT]=Cs% D

where C, is a bounded non-zero constant and 0 < g < 1.

The matrix By multiplying the zero order terms in the follow-
ing analysis will be £7% B, where

B—
0 0 P, 0
0 0 i 0
~@IYPNBIE) O 0 UYMW BIP) |
0 0 -MiEHp/P) 0

(8)

The components of B are now all of order one. The relation
p, = 0 has been used to replace T, by —M1c%(5./p)-

Consider the Cauchy problem for Eg. (5) without zero order
terms. Fourier transformation in y and the use of the energy-
method (see Nordstrém [211) leads 1o

Il + 2ea [ (w212 + lwf)w@l dr = |77

where w? = (u, u, TV, fis the initial data, w is the dual variable
to y, and « is a constant of order one. The error estimate for
the Cauchy probiem is less sharp for pertorbations with small
variations in ¥ (corresponding to W(w — 0)). A similar result
can be expected also for the corresponding initial boundary
value problem including zero order terms. For that reason and
in order to make the analysis more straightforward we will
restrict ourselves to perturbations independent of y. The numert-
cal results shown later confirm the relevance of this restriction.

We obtain (see Eq. (5)), the linearised unsteady one-dimen-
sional equation for a quarter space

w¢:(ﬁ|+l_°g)w, x=0,t=0,

w=20, x=0,r=90,
&)
dwddx = g(n), x=0,t=0,

w— 0, x-—» -0, 1=,

Whﬁl:c; ﬁ,(a/gx) = _Zu)yax + EngQIé)xz = ﬁza/ax + SEGZ/
axt, Py= —By=—€e9B,w={pu v, TV, wd = (u,v, TV,
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g={(g.8,8)r=0,8>00<g<1,and
u P 0 0
_ | ¢p W 0 1HyMYL)
A=
0 0 g 0 ’
0 (y— DML 0 7]
(10)
0 ¢ 0 0
_ lod#p 0o o0
C= o
0 0 wp O
0 0 0 Bp

The mattices A, B, C given by (8), (1) are now of order one.
There is subsonic outflow at x = 0if & < ¢ and ¢ > u indicares
supersonic outflow. Compatibility at 1 = ( requires g(0) = 0.
The problem (9) with 7—"0 # 0 is called the disturbed problem.
If Py is 0, (9) is referred to as the undisturbed problem,

Recall that w is the difference between the solution u in the
unbounded domain and the solution v in the bounded domain
with the artificial boundary at x = 0. The problem (9) corre-
sponds to {3) above.

Strikwerda [33] has shown that the two-dimensional
Navier-Stokes equations require three boundary conditions at
an outflow boundary while one normally extrapolates all four
variables in a numerical calculation. The Navier—Stokes equa-
tions consist of a hyperbolic equation for wi = p coupled to
a set of parabolic equations for W' = (u, v, T)". Tt can be
shown that well-posedness of the decoupled hyperbolic and
parabolic equations leads to well-posedness of the whole system
including the coupling terms (see Kreiss and Lorenz 134]). The
decoupled parabolic equations require three boundary condi-
tions involving w*®, while no boundary condition is necessary
for the hyperbolic equation in the outflow case and, hence, the
three boundary conditions in (9) are imposed on w'?.

The Laplace-transformed version of (9) is

SI— &P+ PO =0, x<0

FWOAX =g, x=0

(1
w—0, x— —m,
where the notation § = 1 + i = es = e(¥ + if) is introduced.
The problem (11) is a system of ordinary differential equations
and the solution can formally be written, & = 2, Q2
exp(xx/e), where k is a root of the characteristic equation
Det{SI — &(P, + Pi(x/e)} = 0. (12)
In the general case (; is a polynomial in x with vector coeffi-

cients of degree n — k, where n is the algebraic multiplicity
of «; and k is the number of linearly independent eigenvectors
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(the geometric multiplicity) associated with «;. To satisfy the
condition that % — 0 when x — — only « with Re(x) > 0
can be accepted. If necessary the superscript + for eigenvalues
with positive real part are used.

For the two-dimensional Navier—Stokes equations at an out-
flow boundary there are three x* (regardless of subsonic or
supersonic flow) for Re(S) sufficiently large; see [33]. Thus,
the solution has three unknown coefficients ¢(8) = (o, 3,
o3)7 to be determined by the boundary conditions. This leads
to a linear system of equations

ES)o(S) = §. (13)
A major part of this paper is devoted to the analysis of (13),
For later reference the notations

Kiin = #(S)hin = min; Re(x'), j=1,2.3, (14)

Kin = K(S)min = minleffl’ J = 1’ 2’ 39

are introduced.
The basic results of this paper are the following.
TueorReM 2.1, The solution of (9) with Py # O satisfies

fDT he(x, D exp(—2ne) dt 1s)

= £V exp (a—lf) f g0 exp(—2nt) dr
e a
ifu>c and
T
fﬂ w(x, N exp(—2mt) dt

(16)
= ¢, exp((o;n + aqe' ")) J: |g(n)]? exp(—2n) dt

ifu<¢ Here n = 0 and x = 0. The constants ¢, ¢y, o), 0,
a; are positive and independent of n and e.

TueOREM 2.2, The solution of (9) with Py=0and¥ > ¢ sat-
isfles

f: Iw(x, DI exp(—2x1) dt a7

= g7 exp (?) J; le()]? exp(—2n) dt

where 11 = 0 and x = 0. The solution of (%) with Py = 0and
u << ¢ satisfies

j " e, OF exp(—2me) di a5

= ex(1/m* exploom) || s(oO exp(—2m) di

JAN NORDSTROM

and

f : wix, N)I? exp(—2m) dr

o (B e 225)
=N\g+al P\E-q/)

where 1 = 1y > (and x = 0. The constants ¢, ¢z, Cs, €4, &,
oy are positive and independent of 1 and .

(19)

Theorem 2.1 means that:

* The error w in the solution is bounded by the boundary data.

* If r > 0, then the error is very small in both the supersonic
and subsonic case.

Theorem 2.2 means that:

* The error w in the solution is bounded by the boundary data.
¢ If r > 0, then the error is very small in the supersonic case.

* The error 1 not small in the subsonic case.

The type of problem (see (3), (9)) that is investigated in this
paper has a correct solution at # = 0 (i.e., the initial function
is zero). The only source of error, the boundary data, is not
likely to cause large errors in the solution for very short times.
However, after an initial short time period that might happen
and, hence, estimates of the type given in Theorems 2.1 and
2.2 gre useful only if they lead to small errors for long times.
A large 7 in the estimates above means that one examines the
solution for short times while a small % means that one focuses
on the long time behavior of the solution.

Note that the estimate (19) leads to errors of order one
also for r > 0. This corresponds to the well-known fact that
extrapolation of all variables at a subsonic outflow boundary
normally leads to inaccurate solutions. Note also that the factors
explanx), a > 0, in the estimates (18), (19} does not mean
that w itself has a boundary layer at x = 0.

2.3. The Undisturbed Problem withour Zero Order Terms
Consider (12) with Py = 0, Det{ST — &P (x/e))} = fo(x) =
fiali) X fo(x), where
Fistwey = {abelp’} + 1HSOp/pt — uNO + @)/p + T %l yp)
+ &Mae? — ) — 2uS(68 + ©)/p}
+ K432 — 295 — SAH + oMot + k{3uST + 5 (20)

[y = {—pfpr + «lu} + S 21)
Fol) = «awt + ag + ag S+ Masy + aq S

+ wHay +oay S+ ap § + HayS + 45,87

+ wayn §* + anS’t + kHapST + apst (22)
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and
g = _Eaﬁd@fﬁs,
Qg = __IZB‘—PjF,
as = 2u(Eh + 6 + EQ/P

ay = (CHT + Bly) — 304 + 0 + VB,

ay, = 4 — 2&2’2,
3 = 6w — E'Z,

dpy = 43,

If Re(S) > 0, fi(k) = 0 has one root 7 with positive real part.
The fifth-order equation fi,(k) = 0 gives us two roots,
ki, ki. A simple algebraic check reveals that fi;(k3) # 0,
Al #0,j=1,73, for all § with Re(S) > 0 and consequently
no triple roots with Re(x) > 0 exist. If necessary the subscript
s and d will be used to indicate quantities related to the single
and double root solutions, respectively.

The existence of a double root x* is possible and the follow-
ing lemma says where in the complex S-plane it might be found.

LEMMA 2.1, Consider (22) with Re(S) > 0. If a double root
k" = k*(S*) exists then

(SO < IS*I < 5[, 52 < |K+] < 53, (23)

where 8, 8,, &, &, are positive constants.

The proof is given in the Appendix. Some additional informa-
tion about the eigenvalues is necessary.

Lemmva 22, LetS= 9+ ig& n=0,|8 = 8. The eigenval-
ues k¥ = o + if§ obtained from fi(x) = f3(k} X fo(k) = O satisfy
o= Cl (2)! 'B“as Czla()! 3[))0,& SE,

(24)
‘B‘/Oi = C4,

az G, 8 =0u>T7,

where the constants C,, Cy, C;, C, are positive and independent

of S. The functions f,, and f, are given by (20) and (21).
Lemma 2.3, Let § = i + i&, n = ny. The eigenvalues

K™ = a 1 i obtained from fif k) = fi:(x) X fi(k) = 0 satisfies

Khin = Ci 1, IBlla = C;,

|Bl/a = (s,

Kmin = C21p, >0,

K = G, Kpin = Cs, = 0,
where ki, Knin are defined by (14). The constants C,, Cy, Cs,
Cy, Cs., Cs are positive and independent of S. The functions fi 5

and f, are given by (20) and (21).

The proofs of Lemma 2.2 and Lemma 2.3 are given in
the Appendix.
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ag = (@6 + 09 + Jm) ~ CREVP
as = (R + @ly) — @@ + 6+ OHP
ap=u"u—71cH

(@b + g + PRI

ap= 3@+ 6+ Pip

il

%)

ayp =+ 6+ ©p

am:l.

The eigenvectors for distinct roots are

rK;) 0
I 0
dn = r(eg) = o | gh = ey = .t
FilK)) 0
(k)
1
gh = 1) = o I (26)
Fa{Ks)
where
LB -l DMiEK
no = oS o ey G

A suitable form of the sotution close to a possible double root

KI= Ky = K F K I8
= )) (le)
r{K;) exp
K €
(28)

K3 H3X KaX
+ o ( )r(xg) exp (—) + e exp (—),
Ky — K, & £

where the subscript s indicates a single root solutton.
The torm of the solution for a double root is obtained in the
following way. The ansatz @ = (¢ + xyn) exp(rx/e) leads to

(A~ C2 + S, =0
{Ak — Ci& + SDWp, = (/1 Ci + ST} i

The first equation yields yr = o3(x/e)r(k), where r(«) is defined
by (26)-(27). The second equation yields ¢ = owrix) +
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aA(i)r(k), where

. s
A(k) = diag(A(k), 0,0, Au(K)),  A(x) == ,
uk + 8§
AR = S+ pllp 29
! ik + 8 — alp

The solution for a double root xy = ks = K #F e is

W,

asd = {mr(x) + GAI(K) + oK) (—ZE) } exp (%)

(30)
KX
+ oue; exp (-——)
£

where the subscript d indicates a double root solution.
Integration of 3"/8x" and 9" ,/0x" from —oo to x leads to

o () {25 e (2]
we=1{— | yo,— oy rikyexp|{ —
K, Ki — Kj &
() {25 rren ()
K3 Ky — Ky £
+ (i)r 0€3 EXP (E)
Ky £
Wy = (E)r{ oy, + A + oy ((E) — r)} r(K) exp (E)
K £ £
+ (E)r O,€;3 BXp (ﬂ)
Ky £

The following lemma will be useful.

Lemma 24, Consider (11) with P, = 0 and Re(S) > 0.
Let w, and W, be the single and double root solutions given by
(31) and (32), respectively. The solutions satisfy

(31

(32)

Iim w, = W,

K]ﬁ—bxl

(33)

where 1, and «, are the two roots of fi3(k) = 0 with positive
real parts.

Proof. The introduction of k, = x and &3 = k + 8« into
(31) gives us

. _{eY KX - K+ 8k (
W, = p exp . gy — o r(k)
1 "k + Sk SKkx
s e () e o2
+ (i) €5 EXP (%)

(34)
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Equation (34) can be linearised for small k. By using

(1 + Sxlk) " =1~ réx/x + O(|6xP)
exp(drx/e) = | + (Srxle) + Ok
rix + 8K) = r(x) + (Sl KIA(K)r (i) + O S,
we obtain W, = W, + O(&«|). This concludes the proof of
Lemma 2.4. )

The distinct root solution given by (28) with the eigenvectors
defined by (26)-(27) leads to

1 0 0
E= E.r = 0 1 0
(i) 0 (kal(i — ksl — rdx)

(35)

and

K
Det(£,) =

_3 (ra(k3) — ry(xk)
Ky — K (36)

_ — Ky DMLEHS + P Ksp)
(uk, + S — puilp)(tins + § — @idlp

The double root selution given by (30) leads to

10 0
E=E=| 0 1 0 (37)
rlel 0 r(kjAg(x)
and the corresponding determinant becomes
—«l(y = DMLEAS + @l p
Det(Ey) = ry(k)A k) = Y NEE

(@K + S — BKHp)?

Note that the determinant in the single root case goes smoothly
over 1o the determinant in the double root case as k; — K, =
K, l.e.,

Det(E,) = Det(E,) + Of|x; — 1)),
(39
lim Det(E,) = Det(E,).

K3y

If the systemn (13) is singular i.e., Det(E) = 0, then (11)
cannot be solved for that particular §.

Lemma 2.5, Consider (11) with P, = 0 and Re(S) =
n = 0. The matrix E in (13) satisfies
IDet/(E)|= C, (40)

where Cy is a positive constant independent of 1 and &.
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The proof of Lemma 2.5 is given in the Appendix. We need
an estimate of W in terms of 2.

LEMMA 2.6. Consider (11 with Py = 0 and Re(S) > 0.
The solution W satisfies
& 2r (Kﬁjnx I,.lz
Kmin exp e g ’

where C, is a pogitive constant independent of §, &, and &y,
wki, are defined by (14).

|v#]* = const ( 4n

Proof. Let us first consider the case with distinct roots
‘); # ;. A direct calculation using the matrix £ = E, from
(35) leads to

R . 2 3, — rlx)§
a =g, T=§g, 0'3=f3(K1,K3):&—De;((E:% (42)
By using (31) and (42) we get
w=H, (—E-) exp (i) + H, (i) exp (E) (43)
K| K Ky ¥
e\ &
+ Hy|— =1,
? (K3) P (Kz)
where
ral k) . 1 .
H =G , Gi=+ -
T O, G ) — i B T iy — ) &
H, = Giey, G.=4 (44)
1
Hy = Gir(iy), Gy= — (k) g

False3) — raliy) ] raliy) — 1y g3

The boundedness of the components ri(x) and rx) for
|S)] < o leads to

IH|| = const

gl, |Ha| = const|gl, |H| = const |gl. (45)

Let us next investigate the case when |§| — . The roots
for large § are

k= VpSI0 + pu/28 + O(S|"2)
Ky = VpS/p + pul2p + O(S|™)
xy = VpSie + pul2e + 0S|

and we obtain

nxy) = O(|S[77),
ri(xy) = O(l8]™),

ryK)) = O(JSI"”)

(46}
ra(Ks) = O(|S[**).

The component r,(x;) is unbounded as |§| —
the estimates (46) into (44) we obtain

lim H, = lim
I fsloe

nledn(e) . r(x) .
ra(ks) — ry(k) : Fers) — rylr) ?
ry(K) P 1 "

rls) — rk) o rGe) — rk) S| -

0

FCHIACS I _ ra(k1) .
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=, By inserting

=]

P

o O

ris) — ry(x) ] ra(xs) — ralwy) :

lim H, = lim

e e

nlgsirds) ri(xs) F;
riis) — 1) °' i) = () 0
rydx1) -~ 1 - — 0
ra(rs) — rilxy) : raley) — ra(l‘fl)g3 0 '
0 &

ra(Ks) N
ry(1) — ralk) ?

rds)rdrs)
ra&;) — ri(K) ]

and hence the estimate (45) holds for all § with Re($) > 0 in
the case with distinct roots. Equations (43) and (45) lead to (41).

Next, consider the case with a possible double root x; =
k; = a + if3. A direct calculation using the matrix £ = E,
from (37) leads to

g — n(iog

=g, o:2=é. m:ﬂﬁa@=g0mwa @7

Note that oy in (42) goes smoothly over to o3 given by (47) as
k3 —> k. The boundedness of the components ri(x) and r.(x)
in this part of the complex S-plane leads to the boundedness
of f;. Equations (32) and (47) lead to

s (e {(5) - o ()
() e (),

where

Fi= g +flx), |Fii=const|g]

Fz = gz, |F2| = const

F3=j?3,

I
|F;5| = const|g].
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The magnitude of W, satisfies

El {{F\F + |FFG) + r)} exp (‘”)
K E

2r
R
P exp (L)}

where F(x) = |kx/e|? explax/e). The solution v, satisfies the
estimate (41) if F(x) is bounded. The maximum of F(x) is
attained at x = —2e/o and F{—2(e/a)) = 4 exp(—2){1 +
(8/a)*}. Lemma 2.2 states that the quotient 8/« is bounded for
« and § within the bounds given in (23).

The estimate (41) is vatid both for distinct roots and in the
case of a double root. Lemma 2.6 follows since (see Lemma
2.4), the single root solution goes smoothly over to the double
root solution as k3 — k;. This concludes the proof of
Lemma 2.6.

[iw4? < const {

+

&
Ky

Proof of Theorem 2.2, Parseval’s relation, the estimate
(41), and the estimate (25) for subsonic flow imply

J: |wCx, O exp(—240) dt = c,(1/ ) exploanfix)

(48)
[} sl exp(=2m0 dt.
For supersonic flow the result is
= 2 ~ 2 o)X
: —27) dt = ™ —
fﬂ hwix, D exp(=29) di < cie exp( . ) 49)

[ s exp(-27m) dr.

The value of g(f) for ¢+ > T cannot change w(x, ) forr = T.
By letting g(#) = 0 for t > T in (48), (49) the estimates (17),
(18) follows.

Lets = (7 + t'g') be of order one; ie.,, § = &5 = O(&). In
this part of the complex S-plane there are no double roots and
the solution  is given by (43), where |H| = const |, i = 1,
2, 3. The eigenvalues « for small S are (see the proof of Lemma
2.1 in the Appendix)

K== {1+ OO, K= k{1 + O
|u - C| N —
. - vy 0(1)

Oe)

w3 = {1+ OS)},
—
(1)

JAN NORDSTROM

and hence

|Hi(e! k) explrixie)| |Hi(e/ k) explixie)|™

KEO)X
=0\ |8le"exp —) i=23.

Parseval’s relation and the estimates (30), (51) lead to

(1)

f: wix, D exp(—2#) dr = % Jiz Po(x. E)FdE

Zﬁx |E - Elz}r Jréo ala g F
= st — dE.
eXp(iu_d){ Y [ blarat

2d€ 5 (0 and, hence, the estimate (19) follows.

In general f fg g

This concludes the proof of Theorem 2.2.

2.4, The Disturbed Problem with Zero Order Terms

The influence of the zero order operator Py will now be
inc_ludin_g the analysis. Consider (12); we have Det{S] —
e(Py + Pi{k/e))} = f(x), where

Fly = filw) + 9 fi(),  fils)

(52)
= b40K4 + b3gK3 + (bzo + b2|S)K2 + (b]iS)K + bngz.

The function fy(k) is given by {22) and

b= +(@CIYROGP,/ D) p2}

by = (/YW@ + 20)p,/pV/p — ©(B,/p)L/p} -
by = —(@IYN(e + 28Xp,/p)/p}

by = +(E1yR(y — Dun,(F,/p) + 208 — A(F/p)}
bu = + @Ry — 2up,/p) + 4u(5/p)}

by = +(cyH2(p/ Y}

(53)

The constants a, by, in f, and | are of order one.

Let & be a root with positive real part to f; = 0 and [S] =
&, > 0 for all £ — 0. A Taylor expansion of f(x) = fi(x) +
g21°9,(k) around & leads to

K= R+ Brerll0

(34)
where dx = O(1) is independent of £. Depending on the polyno-
mials f; and £, we get different values of n:

o f(E®) = 0, 3f(R) /K # 0, and fi(R) # 0 lead to Sk = 0,
n=2.
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* KB = 0, afe(R) ok # 0, and fi(%) = 0 lead to 6k = 0.

¢ (B =0, df(®)/ax = 0, and fi(8) # 0 lead to 8k # 0,
n=1.

* fil® = 0, dfg(’)} ok
lead to 8k # 0, n = 2.

* (B = 0, 3R/ dk
lead o 8k = 0.

i

0, and £i(R) = 0, f.(R)/ak #= 0

I

0, and fi(R) = 0, 8fi(RMédx # 0

The corrections of the undisturbed eigenvalues due to the opera-
tor P, are small if |§] is strictly greater than zero. However, for
small |S!, the operator Py will play a significant role.

LEmMA 2.7.  Ler & be sufficiently small and Re(S) = n =
£f) > 0. Then the eigenvalues x* given by (12) satisfy

min w,, =& + O, msin K= + OE", u>e,
5

(35)

min Ky, = K61 + O(e4%,  min kb, = a,fe
s s (56)

+ a9 + O(s20 9, T <C

The definitions of Ky, and &5y, are given by (14). The constants
Ky, K, O, O, Oy, and & are positive and independent of §, €.

To obtain the estimates {55) and (56) the following assump-
tion was made.

Assumption 2.2.
by = +@/yHly — 25,/ p)
+ 2 ~ DB >0, W<E,
bZO = +(‘C_2/‘}’){(’y - Z)Eﬁj(ﬁ,/ﬁ)

+20 — AP <0, u>c

(57

Condition (57) was checked by using the numerical solutions
that will be presented below. It is valid in most of the boundary
layers that were calculated, except at a few grid points. The
proof of Lemma 2.7 is given in the Appendix.

The following two lemmas correspond to Lemmas 2.5 and
2.6 for the undisturbed problem.

Lemma 2.8, Consider (11) with Re(S) > 0. The matrix E

in (13) sarisfies
IDet(E)| = Gy, (58)

where C is a positive constant independent of S, e.

Lemma 2.9, Consider (11} with Re(S) > 0. The solution

W satisfies
2r R
£ KRox
[#4? = const (—) exp ( = ) |2
Kmin [

(59
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where C) is a positive constant independent of S, e, and Ky,
«k., are defined by (14).

The proofs of Lemmas 2.8 and 2.9 are given in the Appendix.

Proof of Theorem 2.1. Parseval’s relation, the estimate
(59), and the estimate (56) for subsonic fiow lead directly to

f ; [w(x, D2 exp(—270) dt = 8% exp({oa ) + aze! )

(60}
JU | g (D)7 exp(—277) dt.
For supersonic flow the result is
J’: lw(x! f)Izexp(“QﬁI) df = C|£2r exp (?)
(61)

7 sl exp(—27i0 ar.

The value of g(f) for + > T cannot change wix, f) forr = T.
By letting g(f) = 0 for ¢+ > T in (60), (61) the estimates (15),
(16) follow.

3. NUMERICAL EXPERIMENTS

By making computations using the nonlinear Navier—Stokes
equations we can check whether the theoretical conclusions
drawn from the simplified problem (9} agrees with the results
obtained in practice. To obtain the numerical solutions we used
a centered finite-volume discretisation in space and the classical
fourth-order Runge—Kutta method in time.

3.1. One-Dimensional Numerical Experiments

A one-dimensional nonlinear problem is considered in this
section (see Fig. 3). The y-gradients on the basic flow are zero,
i.e., B = 0. The nonlinear problem in this section corresponds
to the (undisturbed) problem (9) with P, = 0 in the linear
analysis above.

Initially the flow field was set to uniform flow G = (P,
[T TM)T. At a subsonic inflow boundary (x = () we used

(see [21]),

U+ 26/y — 1) = Ha + 28y — 1),

Tp'™ " =T.pL", 81, — 2(k/Pryc, =0

as boundary conditions while g = p., & = U, T = T. was
used in the supersonic case. The boundary conditions at the
outflow boundary (x = 1) were

=g, I,=0, g =sin{@r (62)

both for subsonic and supersonic flow.
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I

FIG. 3. Geometry definition for the one-dimensional calculations.

The continuous boundary conditions above were imple-
mented using second-order accurate approximations. The den-
sity py.; at the outflow boundary was obtained using linear
extrapolation, i.e., pyy; = 2Py — Py~ ON a uniform mesh.

One calculation using M. = 0.5, £ = 107? and one calculation
using M, = 1.5, ¢ = 107 were made. The deviation from
uniform flow |w(x, 1) = [¢(x, /) — @.| and the quotient

JElwex, ) exp(—2m0) di
[Tle(|? exp(—2m1) dt

Qe T.m=

have been investigated. Theorem 2.2 indicates that the subsonic
problem might be ill-posed for derivative boundary conditions
in the sense that perturbations of order one in the outflow
boundary data might propagate into the computational domain

0.16

a: t=0.2b
b: t=0.50

d: t=1.00

JAN NORDSTROM

and lead to changes in the solution of order one. This can be
realised by choosing % small in (18), (19). The estimate (17)
is independent of n and we expect the supersonic problem to
well-posed in the sense mentioned above.

The deviation |w(x, r)| (see Fig. 4) due to the oscillating
outflow boundary condition spreads into the whole computa-
tional domain in the subsonic case and the amplitude is of order
one. In the supersonic case the deviation is limited to a very
small region close to the outflow boundary and the amplitude
is of order £. The quotient Q(x, T = 1, ) (see Fig. 5) is strongly
dependent on the parameter % in the subsonic case while the
dependency is weak in the supersonic case. Note that the quo-
tient Q(x, T = 1, » = 10) is small and has a boundary layer
character also in the subsonic case although the computational
result is useless. This means that estimates of the form given
in Theorem 2.2 and Theorem 2.1 are useful when determining
accuracy of the solution only for choices of 7 = O(1).

Finally some remarks about the steady problem are given.
It is not possible (see the proof of Theorem 2.2 and [29]) to
determine the solution to the steady problem {with B = 0)
uniquely by using derivative boundary conditions at the outflow
boundary in the subsonic case. However, by using the time-
dependent equations a steady solution can still be computed,
but we expect to obtain non-unique selutions at steady state in
the subsonic case. The steady problem with derivative boundary

+10°0

3.2
a: t=0.125,0.375,0.625,0.875

b: £=0.250,0.500,0.750,1.000

0.08+ 1.6
0.0 4 0.0 .
0.0 0.5 1.0 0.98 0.99 1.0

(a)

(b)

FIG. 4. |wix, 0]: (a) Ma =05, = 107% (b) M. = 1.5,& = 107",



ACCURATE SOLUTIONS

165

FIG.5. Q. T=1 m: (@ M-=05¢=10% B M. = 1.5, ¢ = 107,

conditions at the supersonic outflow boundary leads to a unique
solution (see the proof of Theorem 2.2 and [29]).

The two cases were integrated up to ¢t = 1.125 using the
boundary conditions given in (62). At¢ = 1.125 the boundary
conditions were changed from w, = 1 to u, = 0 and the calcula-
tions continued. A steady solution was obtained in both cases.
The calculation towards steady state is shown in Fig. 6. At
steady state we obtained a non-zero deviation |w(x, ®)| = |d(x,
®) — .| in the subsonic case while the deviation was zero
in the supersonic case. We conclude that the one-dimensional
(or undisturbed) time-dependent problem with derivative
boundary conditions leads to non-unique steady solutions in
the subsonic case and unique steady solutions in the super-
sonic case.

3.2. Two-Dimensional Numerical Experiments

A two-dimensional nonlinear problem, the laminar flow over
a flat plate schematically depicted in Fig. 7, with large y-
gradients on the basic flow is considered in this section. Large
y-gradients on the basic flow implies that B 5 ). The nonlinear
problem in this section corresponds to the (disturbed) problem
(9 with P # 0 in the linear analysis above.

In ail the caiculations the boundary conditions at the inflow
boundary (x = 0, 0 = y = y,), the solid wall (0 = x = 1,

y = 0), and the upper boundary (0 = x = |, y = y,) were
fixed. The boundary conditions used at the solid wall were
#=00=0, T= T.. At the subsonic inflow boundary
(x=10,0=y=y) we used (see [21]),

B2y —D=h, Tp7=h,
8u.— 2kiPr)c,. = hy, T=h,

as boundary conditions while at the supersonic inflow boundary
x=0,y=y=y.)

p=r, U=n, v=n, T=n

were imposed. The functions A;(y) and r{y), i = 1, 2, 3, 4,
were obtained by solving the compressible boundary layer equa-
tions for the flow over a flat plate. At the upper boundary
located at y,, = 108, where & is the boundary layer thickness,
we have accurate data and therefore w, = 0, v, = 0, 7’,. =0
were used as boundary conditions.
The boundary conditions at the outflow boundary (x = 1,
0=y=y,) were
Fu Iy T

= bl :0’
a8 Ay ax

=0, g =sin(dry (63)

both for subsonic and supersonic outflow.
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0.16
a: t=1.125 c: t=1.500 e: t=2.000
b: t=1.250 d: t=1.750
b a
bd & <
0.084
a e
b a
e d c
0.0
0.0 0.5 1.0

(a)

JAN NORDSTROM

+10°0
3.2
a: t=1.125000
b: t=1.128125
c: t=1.131250 a
d: t=1.134375
e: +=1.140625
f: t=1.156250
g: t=1.187500
1.6 1 b
¢
e
f
0.0 7 =
0.98 0.99 1.0

(b)

FIG. 6. |w(x, f}f close to steady state: (a} Mz = 0.5, & = 107% (b) M. = 1.5, & = 1072,

The continuous boundary conditions above were imple-
mented using ‘second-order accurate approximations. Let the
index i, j correspond to the x, y directions. At the upper bound-
ary, the density pi s was obtained using zero order extrapola-
tion, i.e., P+t = Pin- The density py.., ; at the outflow boundary
was determined using linear extrapolation, ie,, pyy; =
Zow; — Pr-1y-

The computations were made at M., = 2, ¢ = 107, using
first (r = 1) and second (r = 2) order derivative boundary
conditions at the outflow boundary. The time-dependency of
the flow was modeled in the following way. First a steady

y=y, M=1 —

I

FIG. 7. Geometry definition for the two-dimensional calculations.

solution ¢ (x, y) using g, = 0 was computed. Second, the steady
solution was used as the initial solution and advanced in time
using g, = sin(47¢), the time-dependent sclution is indicated
by ér(x.y, ). Finally the deviation |w(x, 1| = |dr(x, ¥, 1) —
bs(x, v)| between the solution at a given time and the initial
(or steady) solution was studied. The deviation in all figures
are evaluated at y = ¥, where M = 055, M is the local
Mach number.

Figures & and 9 show the deviation |w(x, 1)| and the quotient
Q(x, T = 1, n) for the two cases. The theoretical estimates of
the quotient Q(x = 0, T = 1, n) (assuming that g = 3) given
in Theorem 2.1 and the practical result obtained in the numerical
calculations are shown below:

Qx=0,T =1, Pipeory < 1078, r=12,
Ox=0,T=1, Pegew < 1077, r=2,
Ox=0,T= 1, Mypeoy < 1074, r=1,
Qx=0,T=1, Peaew = 1073, r=1

The theoretical and practical results agree quite well. Further-
more, the exponential decay of the quotient away from the
outflow boundary is clearly seen. Note that the result in the
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FIG. 8.

two-dimensional calculations evaluated at M =~ (.55 has simi-
larities with the one-dimensional supersonic (M. = 1.5) calcu-
lation; see Figs. 4 and 5.

Finally, just as in the one-dimensional case, we will investi-
gate the question of uniqueness at steady state. It was shown
in [29] (see also the proof of Theorem 2.1}, that the steady
problem (with B # 0) is uniquely determined by using deriva-
tive boundary conditions also in the case of subsonic flow,
Following the procedure in the one-dimensional problem the
two cases were integrated up to + = 1.125 using the boundary
conditions given in {(63). At ¢+ = 1.125 the boundary conditions
were changed from u, = 1 to u, = 0 and the calculations
continued, A steady solution was obtained in both cases. In
Fig. 10 the calculation towards steady state is shown. At steady
state [w(x, ®)| = [:(x, ¥, ®) — ¢s(x, 7| = 0 was obtained in
both cases. We conclude that the two-dimensional (or disturbed)
time-dependent problem with derivative boundary conditions
leads to unigue steady solutions in both the subsonic and super-
sonic cases.

4. SUMMARY AND CONCLUSIONS

The use of derivative boundary conditions at artificial outflow
boundaries with errors in the boundary data of order one has
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wie, i@r=2,e=10"% M) r=1¢&= 10"

been investigated. Both the problem when the artificial outflow
boundary is located in essentially uniform flow and the situation
when the artificial outflow boundary is located in a flow field
with large gradients has been investigated.

A linear model problem, where the effect of large gradients
in the basic flow field was included, has been derived. These
gradients lead to the presence of large zero order terms in the
linearised model equations. Appropriate bounds of the solution
to the model problem are derived. The bounds become sharper
as the order of the derivative boundary conditions increases in
the supersonic cases and in the subsonic case with large zero
order terms. In the subsonic case without large zero order terms
it is shown that a solution of order one is obtained.

In the subsonic outflow case one obtains accurate solutions
of the nonlinear problem by using derivative boundary condi-
tions if and only if large transversal gradients are present in
the basic flow field. In the supersonic outflow case one always
obtains accurate solutions of the nonlinear problem by using
derivative boundary conditions. The accuracy does not depend
on the presence of large transversal gradients in the basic
flow field.

The result of the numerical experiments, where the nonlinear
Navier—Stokes equations were used, support the theoretical
conclusions drawn from the model problem.
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i, T=1,m:@r=2e=10%br=1¢= 10"

rapn 04 wa 02
2.0 10 1.6 10
a: t=1.1250 a: t=1.12500
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FIG. 10. |wix, 9| close to steady state: (a) r = 2, e = 107, (b)) r =1, e = 107
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APPENDIX A

Proof of Lemma 2.1.
terms of §,

For |§| < 1, x can be expanded in

(18]

K= k08 + lige + (64)

where af* > af, ¢ = 0. The coefficients x and o are
constants independent of §. The result is

alsi=1, alu=2 af; =0, afi;=1, (65
and
k= — 1/ + ©),
&=+ (U@ + DO + (y — Doly)/2p
Ky = =1/ — o),
i = +(11@ — OO + (y — Voly)2p
= —1/%, «9 = +(1/a Y (@/vp)
kO =—1/m « =+ @p)
kS =pulE, k¥ =+1/z, (66)
0) _ pli (3 + @2 —c'ely)
prrlr
= V(G@HB + @) — crely)2m09) — B - c2)/9 ¢ (67
o _ PO + @) + T@y)kes — 2p0
YT w(Eek - @ - ) ©®

Subsonic flow leads to Re(«y) < 0 while Re(x™) > 0 in
supersonic flow. The three eigenvalues with positive real part

in the subsonic case are ki = Ky, K7 = Ks5, K = K. In the
supersonic case we get k¥ = K7, K7 = K5, K§ = K.
For |S| » 1 we make the ansatz
i
K = KfmS K}”S"} + (69)

where af*? < am The coefficients Km and a(i) are constants
1ndependent of §. The result is

‘1(10) =1, 0f—’ll) =0, ag}g,dj.ﬁ,’.’ =3 agg.a.ﬁ.s:f =0, (70
k= —1/u, ki = —¢H(yud)
0= +Vap &= +punyg
k0= Vg K = +pE/2%
kP = +V50, « = 1pu2d (71)
k9= —-V58, «=+pu/2d
k= +Vpm, &k = +pul2E
k¥ = —Vpi@ &Y = +pul2p.
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Independent of supersonic or subsonic flow we obtain «f =
Ki, K¥ = ke, k¥ = Kk,. It is easily verified that the leading
terms of «* do not coincide for small or large § and, hence, if
the double root exists, then & < |S*| < & which leads to
& < |«*| < 8. Only the leading terms of k™ were necessary
in the proof; the other terms were included for completeness.

Proof of Lemma2.2. let § = R exp(i®), where R 3> 1 and
—7/2 = O = +7/2, The approximation of «* given by (69),
(70), and (71) leads to

+VpR/y, cos(@/2),

-w/2=0=<-+7/2,j=1,2,3,
;laim B;= +VpR/x, sin(®/2),

lim ey =
R0

(72)
—m2=0=+7/2,j=123,

—m/2=0=+7/2,j=1,2,3,

where (X1, Xz, X3) = (@, 0, ).

Now the situation on the imaginary axis will be investigated.
Let § = i¢ and assume that k = if3 is purely imaginary; this
leads to fi;(i3) = ff; + if{s, where

Ry= B {(9 + oxuf + é:)z - _2682/7}/5
fla= @B + &H{BeBYp + B> — (@ + &7,

For B = v(8 + B)XuB + £ (c?) we obtain ff, = 0 and
fa= (@B + &° X g, where

g =7Y'0¢(0 + PrEB + H(FE) +v(8 + (y — Do/yVe.

It is obvious that g # 0 and, hence, f;;(iB) # 0. Similarly, one
can also show that £,(i3) # 0 and, consequently, & = § > 0
for § = it |& . Let us next investigate the quotient |3|/
«. The eigenvalues k¥ are functions of the coefficients in f,,
Jf», which in turn are functions of S. Since « 5 0 the only
possibility for |8|/e to be unbounded is that || — = faster
than @ when |¢] — o, By using (72) with © = =7/2 it follows
that the condition (24} is valid on the imaginary axis for |¢] >
8§ > 0.

Close to § = 0 the expansion of k defined by (64), (65),

(66), and (67) is valid. Let S = 5 + £, n =0, |S| = &, where
&y is sufficientty small. In the subsonic case we get

ki = + kS + &'S? + 0(8)

ki =x® + U5+ 26D 73)

F=kP + 0§+ 08D
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while supersonic flow leads to

ki =k + P8+ 0h)

ki =+ S+ O (74)

ki =k + k'S + 08
The notations in (73) and (74) are those given in (64}, (65),
(66), and (67). Condition (24) is trivial in the supersonic case
since the leading term of x* is a real constant. Note that
8, = 0 can be used; i.e., the inequalities hold for all § with
Re(S) = 0.

In the subsonic case we get

-8
(# — ¢}

- g

ki (8)= Cro=DeM 6y o)
2p(u — ¢y

and, consequently,

I DO I 2l V1 2 PR s
a(n, £ (aﬁa“k 50 =7y (7~ €+ 0(8)

(75)

—¢ B+ - Doy ,
ics' mao (2né) + 0(83). (76)

B(n. &)=

Equations (75)—(76) lead to

min e = lima = — &Y' 8 + O(63) > 0,

max|B| = lim [8] = +«3"6 + O(8}) > 0.

Condition (24) for subsonic flow follows from (77) with & >
0. This concludes the preof of Lemma 2.2.

Proof of Lemma 2.3. Condition (25) in the supersonic case
follows directly from Lemma 2.2 and we turn to the subsonic
case. Let § = n, + i& 7 > 0. Equations (75)-(76) are valid
close to § = 0 and lead to

B(m,0) = 0(nd),  (|B|la)(m, )
= 0(n}).

a(m, 0) > k¥ 0,

Equations (75)—(76) also show that o and |B| are growing
functions of £ for |S| sufficiently small. Lemma 2.2 rules out
the possibility of an imaginary « for § = i& [£] # 0. By choosing
7, sufficiently small, Lemma 2.2 can be used to exclude the
possibility of a decreasing « as |¢] increases. Finally, (72) can
be used once more to show that |8|/e is bounded as |£| — o
and, hence, the estimate (25) is valid also for subsonic flow.
This concludes the proof of Lemma 2.3.

Proof of Lemma 2.5. The condition for a singular matrix
E in both the single and double root cases becomes (see (36}
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and (38)).

Kk, = —Sple. (78}

The relations between the five roots of fi (k) = 0 can be written

(k) + K3) + (Ko + Ky + Ks5) = —Ay,
(&) + K)o ks + 5) + (K1K3)
+ (Kykq T Kaks T KyKs) = + Ay,
(KiKs)(Ke + Ko T Ks) + (10 + 1) KoKy + KoK T KeKs) (79
+ (Ko kqKs) = —As,

(K1) KoKy - Kok Kes) T+ () T s )(Kkeraks) = + Ay,
(K1K3)(K2K4'§5) = —Ag,

where, see (20), the coefficients are

Ay = (S8 ~ @8 + )P + TRIYP) O 9P

A, = (a(@ — ¢ — 2uS(0 + Pp)/(uh ¢/p%)

Ay = (302 — B8 — S8 + ) (p) (ubF/p)

A, = (3uSHI(FO B/ PY

Ay = (SHuB o/ p%).
By solving for (kyxaxs), (k2 + Ko T Ks), and (rory + ks +
K45) in (79) the two equations for x = (k; + k) and y = (i k),

O xHAd + x4, — 2y H{—Ady+ A - AN =0

+ & + x{As— Ay} H{-ASy+A-y=0,

can be derived. The first equation minus x times the second
equation leads to

A+ Ay — v+ Ay T A — Ayt = 0. (8D)
Condition (78) inserted into (80) leads to

X2 = (), + k)2 = (PI2ENH3E — 0)
= Ve — 6 + 4y — DEF v}

This means that k, + k; is independent of § and purely real.
The eigenvalues must be of the form x, = o + i and x; =
a; — i3. Now since a; > 0, a; = 0 we get Re(kiKy) = aj
+ f3? > 0 which contradicts condition (78), since Re(§) > 0.

Proofof Lemma?2.7. We have toinvestigate the eigenvalues
for small §. Let § have the form

S=3Se8, B8>0, &<|S|<é&,
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where &,, &, are constants. For k we make the ansatz

0 u 1 !
=K"e% + kel +

o =B, of">al & <| <8, 530,

where &,, &; are constants. Three different cases with decreasing
B will be investigated. The magnitudes of « in the three different
cases are

o =1-—g, ey = 0

i. B=1-¢q = oz =1 —q, 0557 =0

iit. B =1- q 5= Q334 = | R q— 5, U567 = 0
where § > 0.
The supersonic case is analysed first. The leading coefficients

(0) . . . .
#5g; In all the three cases, i—ili, are given by

Ehon + (15(]!(2 + agk + yy = 0.

We have Re(x{") > 0, Re(x™) > 0, and Re(x!") > 0. The
coefficients K(S?éj are explicitly given by (66) and (67}. By choos-
ing ki = K7, kI = Ks, K§ = K the following estimate is ob-

tained:

u>7, casesi-iil. minRe(x) = C,, min|«|=C,. (81)
i i

The positive constarts C; and C, are independent of €.

The case with subsonic flow is more complicated. In all the
cases i~iii we have Re(x{") > 0, Re(x”) > 0 while Re(x}") <
0. A third eigenvalue with positive real part is necessary.

Consider case i. The equations for remaining leading coeffi-

cients are

b20K2 + b”S'K + 33013'2 ={

i’ + by =0 2)
which lead to
K=-05, «=-C8, (83)
& = +Vbylag, ¥ = =NV =bylay,
where
Cro = +(b/2bx) * V(b,/2by)? — bylby. (84)

Condition (57) in Assumption 2.2 leads to three eigenvalues
with positive real part, ki = k3, K3 = K5, K3 = K. Furthermore,
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(53) and Assumption 2.2 lead to

bpe>0, by >0, by=uby— @ +cHbp>0. (85)

Equation (85) shows that
bl — dbybg = (by — 2uby)? + 40%by = O

and, hence, C,, in (84) are positive and real constants. From
(82), (83), and (57) the estimate

#=7, casei.minRe(x) = Ce'% min|x|= Ce'™
i :

(86)

is obtained. The constants C | and C, are positive and indepen-
dent of &.

Consider case ii. The equation for remaining leading coeffi-
cients is

agr’ + (0313‘)’(3 + (azzg2 + bzo)K2
N . - _ (87)
+ (313S3 + b”S)K + (amS4 + b()gSz) ={.

An explicit solution for ¥ from (87) cannot be obtained. An
expansion of the solution in terms of small values of & — ¢
leads to

0 — =3 _ bn = =
KW = -9 {l 257 —7c)+ O C)z)}. (88)

The real part of &% is zero if Re(§) = 0. This leads us to
include the next term in the expansion of «. The first terms in
the expansion of the third eigenvalue with positive real part are

Kt = kOgla g gkl=a 4 O(ghl-0+8), (89)

The approximation (88) of « leads to

y—-b_

¢ { by (u
1 +— (:) (u—1)
(257 \¢

- g +
P 2
@2y 2%

+ O((u — E)z)}.

For small values of |z — ¢| an approximation of the third eigen-
value in the right half of the complex plane is obtained. We
do not expect the variation of [# — ¢| to change the character
of this eigenvalue and, hence, the eigenvalues with positive
real part in case il are x{ = ", K = ks, ki = Ky. Equations
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(89), (88), and (90) lead to the estimate

u <<, caseil. minRe(x") = C5je + Cg¥79,
i o

min|«;| = Cye'.
)

The positive constants C,, C,, and C; are independent of &.
Consider case iii. The equation for remaining leading coeffi-
cients is

apk + (a31§)K3 + (a22§2)K2 + (3”3'3),( + (amgw') =0
(92)

The real part of the leading coefficient @ = —$/( — ©) is
zero if Re(S) = 0; this leads us to include more terms in the
expansion of k. The third eigenvalue with positive real part
can be written
Kkt = gWgl=4-8 4 ((gl-gtd 4 DMNi-g-& 4 O(en),
< (1 — q)/2,

k" = gOp!7978 + (2gmamd + O(e"),

(93)
§>(1 -2,
where ¥, = min(3(1 — ¢ — 8, 2(1 — g + &), v» =
min{3(1 — g — &, (1 — g + §)), and

by = bu(i — ©) + bp(u — €7

o

() =
@-a ° %S ’
o SO+ v = Vi)
pE-cy

Note that solution (93) converges to the solution given by (89),
(88), and (90) if § — 0 and u — ¢. The eigenvalues with positive
real part are k7 = «*, &§ = w3, ki = K, and the following
estimate is obtained

¥ <. T, caseiil. minRe(x) = C\9e + C,e™'79,
' (94)

min|«| = Cye' %
/

The positive constants C,, (;, and C; are independent of &.

Finally the case when |§| = & > 0 as & — 0 is considered.
The corrections of the undisturbed eigenvalues due to the gradi-
ent terms are small in this region of the S-plane; see (54).
Lemma 2.2 with &, of order one leads to

u>¢, caseiiii. minRe(x)=C,, minj«|=C, (95)
i i

where C, and C, are positive constants independent of ¢.

The estimates (81), (86), (91), (94), and (95) cover the right
half of the complex S-plane and the estimates (55) and (56)
follow. This concludes the proof of Lemma 2.7.
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Proof of Lemma 2.8. The solution is (see (28))

aw K3 KX KX
= — -]+ —_—
= (o (25 e () = e ()

+ o ( i ) Y exp (ng) (96)
Ky — Ki £

The same notations that were used in the proof of Lemma 2.7
will be vsed.

The subsonic case is analysed first, Let § = Se!~9*¢ which
corresponds to case i above. There is no double root in this part
of the complex S-plane. The eigenvalues and eigenvectors are

ki =kl e+ O,k =K+ O,

k=D + 0En, 80,
G(kt) =@ + ¢ ' + Oe'*Y),
8>0,j=1,23,
where
P — p A — 7%
© A
= @ —
Me{{at — cHp/p) + (v — D}
and
0 —plu
0 1
o 0 —
2 1 ’ 3 0
0 —(y — DMEH (@ — $x1p)

The determinant becomes

252
M )}{Az} + O,

where

Ay = (y — Dut,pxp — (u — & Ip)@* — )p,/P)
(97)

By using Assumption 2.2 it can be shown that A, # 0 and
consequently Det{E) + 0.

Let § = S&'"7 which corresponds to case ii above. No double
root exists in this part of the complex S-plane. The eigenvalues
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and eigenvectors are

& = K(,ms"q*o‘al-w), id =&+ Oe' ),
ki =KD+ 0", §>0,
) = g7+ g e+ Olet ),
5§>0, j=1,2,3,

where

oo =

ELT_‘.KEU) uk” + §) - Bl I Kﬁmz}
— &K + Sy
{a® + 8y - PP + §)

MA@ + S ~ W pdp) + Gy — DER Gk + 5

and
0 —pla
0 1
0 _ 0 —
A I 0
0 —(y — DM — oxlp)

The determinant becomes

Mic

m} {AZK(][])Z + (A;SH)K[,O) + Aggq}
1

Det(F) = {
+ 0(&'™),
where A; is given by Eq. (97) and
Av=(y = Dt + ox1p)y — G — ox1p)2u(p,/p)
Ay=(y ~ D, — (@ — o 7p)(p,1P).
An eigenvalue of the form K2 = ¢,§ solves AZK(.O)Z + (4,5

" + AeS® = 0. If Re(C)) > 0 a singular matrix £ might exist.
The intreduction of ¥ = C,§ into {87) leads 10

{ﬂmc‘? + ﬂ31C? + ﬂzzc% +apC + am}§4

+ {bpC + b, C, + bp}S? = 0.

If the coefficients multiplying §* and §2 both vanish for Re(C,)
> (0 we might have Det(E) = O(e'%). However (see (83}, (84),
(89)) the solutions to bxZ* + by Z + byp = 0 lead to Re(Z) <
0 and, consequently, Det (E) # (0 for case ii in subsonic flow.
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In case iii, i.e., § = §&'"¢~, the following eigenvalues and
principal part of the eigenvectors are obtained:

ki ="+ O, 0<6<] —g,
ki = + O(aliﬂ)
K=k +0ETY)
I 0
wol el
0 1
(y — LMiE 0
—plu
. 1
v = .

—(y — DMLt — or$"/p)
The determinant becomes

(y — DML

m} {e—u+ EEK%O)/E} + O(e' .

Det(E) = {

It follows that Det(E) # 0 since «i’ > 0.

Let us now turn to the supersonic case. Cases i—iii can be
treated simultaneously. The eigenvalues and principal part of
the eigenvectors are

ki =&+ 0=, w =P+ 0,

K+ 0D, 6>0,

it =
—pilt 0
1 0

= 0 . J= 1340 =
—(y — DML — ¢ p) 0

The determinant becomes

—(y = Mo p)
(u — oy 1p)( — 3"/ p)

Det(E) = { } + Oe®

and the determinant is obviously non-zero.

Finally the case when |S| = & > 0 as & — 0 is considered.
The corrections of the undisturbed eigenvalues due to the gradi-
ent terms are small in this region of the S-plane (see (54)). Let
R, Ky, % be the roots of the undisturbed problem. The leading
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terms of the eigenvectors in the case of distinct roots %; # k; are

i = r(&) + O, iy =e; + O,

(98)
i = r(k;) + O("77),

where (i) and e; are given by {26) and (27). A direct calculation
using the formulation (96) for distinct roots leads to
Det(£} = Det(E;y + (X&',

lim Det(E) = Det(E,), (99)
=0

where Det(E,) is the determinant for distinct roots in the undis-
turbed case given by (36). Furthermore (see (39)), for |&; —
R1| -— 0 we have Det(E,) = Det(E,). The determinant for double
roots in the undisturbed case, Det(E,), is given by (38). By
using (99), (39), and Lemma 2.5, it follows that condition (58)
holds. This concludes the proof of Lemma 2.8.

FProof of Lemma 2.9. Let us first consider the case when
|S| — 0 as £ — 0. No double roots exist in this part of the
complex S-plane. The solution is

ar
g = Ry exp( ) + Ry exp( ) +. Ry exp (%),

where

K K
R1 = —0'3( 2 ) + oy, Rz = 0, R3 +O'3( 3 )
K3 =~ K Ky — K

Condition (58) and the fact that the eigenvectors ¢, ¢, and
i, are bounded in this part of the complex S-plane leads to

[R)| = const|g], |R,| = const|g], |Rs| = const|g|.

Integration of 8"W/dx" from — to x leads to

( )w.exp( )+R2( )¢2exp( )
x(Efomle

and condition (59} follows.

Next, the case where {S| = & > 0 as & — 0 is considered.
Let %, %, R; be the roots of the undisturbed problem. The
corrections of the undisturbed eigenvalues due to the gradient
terms are small in this region of the S-plane (see (54)). The
leading terms of the eigenvectors in the case of distinct roots
R, 7 &; are given by (98). A direct calculation using the formula-

w=R
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tion (96) for distinct roots leads to

dwlax" = {H, + O(e' )} exp {(%) (1 + 0(82(1_")))}

sz) (1 + 0(82(1—.;)))}
[

+{H, + O(z" 9} exp {(

+{H; + (e} exp {(%}x) 1+ O(ez”"f)))},

where H,, H,, H; are given by (44). Integration of 8"/dx" from
—o0 to x leads to

{(le) (1 + 0(82(1—q)))}r {H, + O(z' 9}

(k_lx) (1+ 0(82““”))}
g

fx) (r+ 0(82““"’))}’ {H, + O}

{
(
o (22) 0+ 00
[
{

+ { %’x) 1+ 0(82““”))}r {H; + O™}

exp (%) 1+ O(sz(l“”))}.

Lemma 2.6 states that the solution of the undisturbed problem
satisfies the estimate (59). The solution given by (100} con-
verges to the undisturbed solution for distinct roots given by
(43) as £ — 0. Moreover, Lemma 2 .4 states that the undisturbed
solution for distinct roots with &, # &, converges to the undis-
turbed solution for a double root &, = & = &k as ¥ — &, and,
hence, we can conclude also that the solution of the disturbed
problem satisfies the estimate (59). This concludes the proof
of Lemma 2.9.

(100)
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